Answer:
Option D
Explanation:
Given,
Young's modulus of material= $2 \times 10^{11} N/m^{2}$
Elastic limit or stress = $1 \times 10^{8} N/m^{2}$
Length of the wire =1 m
We know that ,
$Y= \frac{stress}{Strain}\Rightarrow Y= \frac{stress}{\frac{\triangle L}{l}}$
Here, l= original length of the wire,
ΔL= charge in the length of the wire
ΔL = $\frac{Stress \times l}{Y}$=$\frac{1\times 10^{8}1}{2\times 10^{11}}$
= $0.5 \times 10^{-3}$=0.5 mm